3.13.20 \(\int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x))}{a+a \sec (c+d x)} \, dx\) [1220]

Optimal. Leaf size=93 \[ \frac {(3 A-B+C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {(A-B-C) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {(A-B+C) \sqrt {\cos (c+d x)} \sin (c+d x)}{d (a+a \cos (c+d x))} \]

[Out]

(3*A-B+C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a/d-(A-B-C)*(c
os(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a/d-(A-B+C)*sin(d*x+c)*cos
(d*x+c)^(1/2)/d/(a+a*cos(d*x+c))

________________________________________________________________________________________

Rubi [A]
time = 0.19, antiderivative size = 93, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.116, Rules used = {4197, 3120, 2827, 2720, 2719} \begin {gather*} -\frac {(A-B-C) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}+\frac {(3 A-B+C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {(A-B+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x]),x]

[Out]

((3*A - B + C)*EllipticE[(c + d*x)/2, 2])/(a*d) - ((A - B - C)*EllipticF[(c + d*x)/2, 2])/(a*d) - ((A - B + C)
*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*(a + a*Cos[c + d*x]))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3120

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(a*A - b*B + a*C)*Cos[e + f*x]*(a
 + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Dist[1/(b*(b*c - a*d)*(2*m
 + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) + B*(
b*c*m + a*d*(n + 1)) - C*(a*c*m + b*d*(n + 1)) + (d*(a*A - b*B)*(m + n + 2) + C*(b*c*(2*m + 1) - a*d*(m - n -
1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^
2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rule 4197

Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sec[(e_.)
 + (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[d^(m + 2), Int[(b + a*Cos[e + f*x])^m*(d*
Cos[e + f*x])^(n - m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}
, x] &&  !IntegerQ[n] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx &=\int \frac {C+B \cos (c+d x)+A \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx\\ &=-\frac {(A-B+C) \sqrt {\cos (c+d x)} \sin (c+d x)}{d (a+a \cos (c+d x))}+\frac {\int \frac {-\frac {1}{2} a (A-B-C)+\frac {1}{2} a (3 A-B+C) \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx}{a^2}\\ &=-\frac {(A-B+C) \sqrt {\cos (c+d x)} \sin (c+d x)}{d (a+a \cos (c+d x))}-\frac {(A-B-C) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{2 a}+\frac {(3 A-B+C) \int \sqrt {\cos (c+d x)} \, dx}{2 a}\\ &=\frac {(3 A-B+C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {(A-B-C) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {(A-B+C) \sqrt {\cos (c+d x)} \sin (c+d x)}{d (a+a \cos (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 6.45, size = 1973, normalized size = 21.22 \begin {gather*} \text {Too large to display} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x]),x]

[Out]

(((3*I)/2)*A*Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]*Csc[c/2]*Sec[c/2]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((2*E
^((2*I)*d*x)*Hypergeometric2F1[1/2, 3/4, 7/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*
x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*S
in[2*c]])/((3*I)*d*(1 + E^((2*I)*d*x))*Cos[c] - 3*d*(-1 + E^((2*I)*d*x))*Sin[c]) - (2*Hypergeometric2F1[-1/4,
1/2, 3/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*
x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((-I)*d*(1 + E^((2*I)*d*x)
)*Cos[c] + d*(-1 + E^((2*I)*d*x))*Sin[c])))/((A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*(a + a*Sec[c +
d*x])) - ((I/2)*B*Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]*Csc[c/2]*Sec[c/2]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*
((2*E^((2*I)*d*x)*Hypergeometric2F1[1/2, 3/4, 7/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*
I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d
*x)*Sin[2*c]])/((3*I)*d*(1 + E^((2*I)*d*x))*Cos[c] - 3*d*(-1 + E^((2*I)*d*x))*Sin[c]) - (2*Hypergeometric2F1[-
1/4, 1/2, 3/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*
I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((-I)*d*(1 + E^((2*I)
*d*x))*Cos[c] + d*(-1 + E^((2*I)*d*x))*Sin[c])))/((A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*(a + a*Sec
[c + d*x])) + ((I/2)*C*Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]*Csc[c/2]*Sec[c/2]*(A + B*Sec[c + d*x] + C*Sec[c + d*x
]^2)*((2*E^((2*I)*d*x)*Hypergeometric2F1[1/2, 3/4, 7/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E
^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2
*I)*d*x)*Sin[2*c]])/((3*I)*d*(1 + E^((2*I)*d*x))*Cos[c] - 3*d*(-1 + E^((2*I)*d*x))*Sin[c]) - (2*Hypergeometric
2F1[-1/4, 1/2, 3/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E
^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((-I)*d*(1 + E^(
(2*I)*d*x))*Cos[c] + d*(-1 + E^((2*I)*d*x))*Sin[c])))/((A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*(a +
a*Sec[c + d*x])) + (Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]^(3/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((-4*(A -
B + C + 2*A*Cos[c])*Csc[c])/d - (4*Sec[c/2]*Sec[c/2 + (d*x)/2]*(A*Sin[(d*x)/2] - B*Sin[(d*x)/2] + C*Sin[(d*x)/
2]))/d))/((A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*(a + a*Sec[c + d*x])) + (2*A*Cos[c/2 + (d*x)/2]^2*
Cos[c + d*x]*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*(A + B*Sec[c
+ d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c
]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(A + 2*C + 2*B*Cos[c + d*x] +
A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x])) - (2*B*Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]*Csc[c/2]
*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*(A + B*Sec[c + d*x] + C*Sec[c + d*
x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x -
 ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*S
qrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x])) - (2*C*Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]*Csc[c/2]*HypergeometricPFQ[{1
/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTa
n[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sq
rt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]*(a
+ a*Sec[c + d*x]))

________________________________________________________________________________________

Maple [A]
time = 0.13, size = 281, normalized size = 3.02

method result size
default \(\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (A \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+3 A \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-B \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-B \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-C \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+C \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )+\left (2 A -2 B +2 C \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-A +B -C \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}{a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(281\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(cos(1/2*d*x+1/2*c)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(
sin(1/2*d*x+1/2*c)^2)^(1/2)*(A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))
-B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-B*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-C*EllipticF(cos(1/2*d*x+1/2*c
),2^(1/2))+C*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+(2*A-2*B+2*C)*sin(1/2*d*x+1/2*c)^4+(-A+B-C)*sin(1/2*d*x+1/
2*c)^2)/a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/
2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(cos(d*x + c))/(a*sec(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.41, size = 266, normalized size = 2.86 \begin {gather*} -\frac {2 \, {\left (A - B + C\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - {\left (\sqrt {2} {\left (i \, A - i \, B - i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A - i \, B - i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - {\left (\sqrt {2} {\left (-i \, A + i \, B + i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A + i \, B + i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - {\left (\sqrt {2} {\left (3 i \, A - i \, B + i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (3 i \, A - i \, B + i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - {\left (\sqrt {2} {\left (-3 i \, A + i \, B - i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-3 i \, A + i \, B - i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{2 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

-1/2*(2*(A - B + C)*sqrt(cos(d*x + c))*sin(d*x + c) - (sqrt(2)*(I*A - I*B - I*C)*cos(d*x + c) + sqrt(2)*(I*A -
 I*B - I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - (sqrt(2)*(-I*A + I*B + I*C)*cos(d*x +
 c) + sqrt(2)*(-I*A + I*B + I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - (sqrt(2)*(3*I*A
- I*B + I*C)*cos(d*x + c) + sqrt(2)*(3*I*A - I*B + I*C))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos
(d*x + c) + I*sin(d*x + c))) - (sqrt(2)*(-3*I*A + I*B - I*C)*cos(d*x + c) + sqrt(2)*(-3*I*A + I*B - I*C))*weie
rstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a*d*cos(d*x + c) + a*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {A \sqrt {\cos {\left (c + d x \right )}}}{\sec {\left (c + d x \right )} + 1}\, dx + \int \frac {B \sqrt {\cos {\left (c + d x \right )}} \sec {\left (c + d x \right )}}{\sec {\left (c + d x \right )} + 1}\, dx + \int \frac {C \sqrt {\cos {\left (c + d x \right )}} \sec ^{2}{\left (c + d x \right )}}{\sec {\left (c + d x \right )} + 1}\, dx}{a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+c)),x)

[Out]

(Integral(A*sqrt(cos(c + d*x))/(sec(c + d*x) + 1), x) + Integral(B*sqrt(cos(c + d*x))*sec(c + d*x)/(sec(c + d*
x) + 1), x) + Integral(C*sqrt(cos(c + d*x))*sec(c + d*x)**2/(sec(c + d*x) + 1), x))/a

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(cos(d*x + c))/(a*sec(d*x + c) + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{a+\frac {a}{\cos \left (c+d\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + a/cos(c + d*x)),x)

[Out]

int((cos(c + d*x)^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + a/cos(c + d*x)), x)

________________________________________________________________________________________